ディー・クルー・テクノロジーズ Blog

bookmark_borderシステムLSIの低消費電力化技術(6)  

昨今はチャージリサイクリングによる低消費電力化の研究が活発です。その1つを今日はお話します。

チャージリサイクリングでViを下げる

以前の記事で解説した数式を1つ思い出していただきたいのですが、CMOSLSIの消費電力の算出で、Pcは(1)「C・Vi・Ve・f」もしくは(2)「C・Ve2・f」で表されます、と申し上げました。このうちViを、「チャージリサイクリング」と呼ばれる低消費電力化を図る技術についてご紹介します。

チャージリサイクリング技術とは?


ブログをご覧の皆様には基本的レベルの事ですが、重要なのであえて申し上げますと、LSIの内部ノードは、演算動作に応じてVeと0の間を遷移します。内部ノードを、0→Veにする時は電源から所定のノードへ電荷を供給し、Ve→0にする時はノードの電荷をGNDへ引き抜いています。

演算動作中、演算を実施しているノードと、これから演算を開始するノードがLSI内で同時に存在します。すなわち“Ve”へ充電したいノードと“0”へ放電したいノードが混在する。ということが頻発します。この状態でノード毎に充放電すれば、当たり前ですが消費電力量は増えますね。

チャージリサイクリングとは、あるノードをVe→0にする時、その電荷をすべてGNDへ捨てるのはもったいないので、電荷の一部を0→Veにしたい別ノードへ渡して再利用する技術なのです。

なんとも賢い方法ですね。原理図を示します。

図16 チャージリサイクリング技術(原理図)

チャージリサイクリングのメカニズム


メカニズムを簡単に説明します。

ノード[A]、[B]を各々Ve→0、0→Veにする場合、t1のタイミングでS1をONさせ電荷分配によってノード[A]および[B]をVe/2にします。次いでt2のタイミングでS2(GND側スイッチ)、S3(電源側スイッチ)をONし、ノード[A]、[B]を各々目標のVe/2→0、Ve/2→Veにします。この過程において、ノード[A]の放電する電荷の1/2はノード[B]を充電するために再利用されている。このチャージリサイクリング技術によって、消費電力を1/2に低減する事ができるわけです。

チャージリサイクリング技術の強誘電体メモリ応用例

さらに、図17にこの技術を強誘電体メモリ(FeRAM)へと応用した事例を示します。従来強誘電体メモリは、セルプレート線に容量値の大きい強誘電体メモリセルが接続されており、その充放電時の消費電力が大きな問題でした。

図17 強誘電体メモリ(FeRAM)への応用事例

メモリアクセスによってセルプレート選択線CP1=“1”(選択)からCP2=“1”へ切り換えるとき、まず、電荷回収用容量線CP0とCP1をSW1によってONさせ、CP1とCP0とを電荷分配させる。この時、CP1の電荷の一部がCP0へと転送されます。次にCP0とCP2をSW2によってONさせると、CP0の電荷の一部がCP2へ転送されます。
すなわち、放電すべきCP1の電荷の一部が、スイッチドキャパシタ動作によってCP1→CP0→CP2のパスで、充電すべきCP2で再利用することができるのですね。この時 CPn/CP0値を最適化すれば、およそ50%近い電荷再利用効率を得る事ができた、という事例になります。

「容量の充放電」がポイント

ポイントは、CMOSLSIで使われる電力のほとんどが「容量の充放電」で費やされている事実です。ですから、チャージリサイクリングのような「容量の充放電」をコントロールする技術は低消費電力化において重要な技術です。言い換えるなら、LSI回路設計における低消費電力化とは「ある大きな容量のノードを放電する時、その電荷をどこか他のノードに利用できないか?」が本質といっても過言ではありません。(その解決策を考えるのがLSI技術者の面白いところでもありますね)

さて、システムLSIの低消費電力化技術についてはひとまず終え、次は高速化技術についてご紹介できればと思います。

bookmark_borderシステムLSIの低消費電力化技術(3) 

この記事では、システムLSIの低消費電力化技術の1つとして、一世を風靡した8ミリビデオ・カムコーダ用に開発したDRAM混載SoCについてお話します。

8ミリビデオカムコーダとは?

使ったご経験がある方おられると思いますが、個人がテープに録画記録するビデオカメラで、運動会で活躍するお子さんをこぞって撮影するお父さんたち、旅行先で動画撮影のために持ち歩く旅行スタイルなど、当時の生活の楽しみ方を根本から変える画期的製品でした。持ち歩いて長時間撮影したいと、より軽量かつ小型なカムコーダを市場から求められましたので、それを実現するための技術開発が行われました。

当時のマルチメディア画像処理の仕組み

画像処理を中心としたマルチメディア信号処理では、大容量メモリ(フレームメモリ)とロジックとの信号のやりとりが特に頻繁になります。

図12 NR+TBCシステム

カムコーダでは画像処理のために、「ノイズ・リデューサ+タイム・ベース・コレクタ」略してNR+TBCシステム(図12)を用いていました。入力であるVTR(録画映像)のPB信号は、録画テープを回転させるドラムの回転ムラ等に起因した時間的な「ゆらぎ」、Δfジッターを持っています。映像をきれいに残すためにはSN比の向上を図るNRが重要で、これを実現する為に「ジッターを持った」1フレーム前の信号との相関を利用します。これがNR+TBCシステムです。

1フレーム前の相関を利用するためにはフレームメモリからTBCされたジッターの無い信号を出力する必要があります。しかし、各々8ビットのビデオ・データともなると、NR+TBCの処理だけでも、メモリとロジックとで、24本のデータラインが13.5MHzのサンプリング・レートで結ばれることになり、消費電力が高くなってしまいます。

ロジック+DRAM混載のSoCの必要性

当時はフレームメモリ(DRAM)とロジックとは別チップであり、その場合ピン間容量が大きく、消費電力の点で、携帯用機器としては大きな問題でした。通常LSIのブロック内、ブロック間、チップ間の配線部分の容量比率は、おおよそ1:10:100(図13)であり、ここまでのピン間容量比率であればもう信号処理ロジックとフレームメモリとを同一チップに入れる方が、消費電力的に圧倒的に有利です。そういう経緯から、ロジックとDRAMを混載した「システム・オン・チップ」(SoC)の新規技術開発およびその実現プロセスが必要となったのです。

図13 DRAM混載による消費電力削減

これから先のマルチメディア信号処理

今回はDRAM混載による消費電力削減の重要性について、お伝えしました。その後ビデオ撮影のできる製品は携帯電話、スマホな高解像度で撮影できる製品は増えましたが、これから先の画像処理においても、さらなる高解像度化への要求は続くはずです。特に画像圧縮/伸長、画像認識、3次元グラフィックス等が主役となるマルチメディア信号処理では、今後もメモリ中心の処理が避けられないはずです。こうしたことからも、DRAMプロセスをコアとしたDRAM・ASIC混載プロセス技術が今後重要になるのではないかと想定しています。

次は、低消費電力化を実現するアーキテクチャの工夫について、書きたいと思います。

bookmark_borderシステムLSIの低消費電力化技術(2)

こんにちは。今日はDRAM,SRAM, フラッシュメモリなどの低消費電力化についてお伝えします。

活性化領域の最小化技術とは?

DRAM、SRAM、フラッシュメモリ等のメモリでは、ワード線およびビット線分割によるアレー分割によって、その空間的活性化領域を低減し、低消費電力化を図っています。携帯機器等に使用されるプロセッサでは、プロセッサを構成する各機能ブロックへのクロックの供給を必要に応じて断続的にコントロールするパワーマネジメントによって低消費電力化を図っています。こうした活性化領域の最小化技術について説明します。

ワード線分割

ワード線分割の原理を図9※に示します。ワード線を分割してN個のサブアレーに分ける事により、1本のワード線に接続されるセル数を1/Nに減らします。1個のサブアレーのみが活性化されるので、低消費電力化が図れます。 

※原理を示したもので、現在実践されるワード線分割は多様化しています。

図9 ワード線分割方式

フラッシュメモリのプログラム動作時の様に高電圧パルスが必要な場合は、上図の副ローデコーダに増幅器の役割も担わせて、高電圧系の活性化領域を減らし低消費電力化を図る事もできる。ビット線についても同様に階層化する事により、同様の効果が得られます。

選択的ビット線プリチャージ

選択的ビット線プリチャージは、ASICにおけるRAMやROM等で用いられている技術で、その原理を図10に示します。

図10 選択的ビット線プリチャージ

本方式のコンセプトは読み出し動作において選択されたビット線のみプリチャージして、低消費電力化を図る事です。プリチャージはカラムスイッチを介してセンスアンプ側から行います。読み出し動作で選択されていないビット線は、カラムスイッチが閉じているため、プリチャージされず、活性化領域の最小化=低消費電力化が図れます。

以前に画像処理に使うMPEG2ビデオコーデックLSIを開発したことがありますが、従来版ではLSIの全消費電力の2/3をデュアルポートRAMが占めていたのですが、この選択的ビット線プリチャージ方式を用いる事によって、RAMの消費電力を1/3以下にする事に成功し、600mWという低消費電力のMPEG2ビデオコーデックチップを実現したことがあります。

バス分割

現在のMPUやDSPでは、そのメインバスがチップ全体に及んでおり、より大きな容量値を持っていることが多いです。こうしたチップではDCTやディジタル・フィルタ等の処理を行う時、積和演算がくり返し行われますが、この積和演算はALU及び乗算器とレジスタとのデータのやりとりが頻繁で、しかもそれをメインバスを介して行うため、大きな容量ノードであるメインバスの活性化率が上がってしまい、消費電力的に問題となっておりました。その解決策であるバス分割を図11に示します。

図11 バス分割

バス分割では、あたかも得意な機能の異なる右脳と左脳を脳梁で分けるように、積和演算を行うアクセスが頻繁な「演算系」とアクセス頻度が高くない「周辺系」とを分割する事によって低消費電力化が図られています。

次に、DRAM混載SOCについて事例を折り混ぜながら解説していこうと思います。