ディー・クルー・テクノロジーズ Blog

bookmark_borderハイルドライバー方式の振動子をツイータに搭載。D-CLUEオリジナル ハイレゾスピーカを展示

ハイルドライバー式スピーカセット
シリンダー型ハイレゾスピーカ。中央はメディア再生用アンプ。

今や音楽視聴はデジタルが当たり前という時代ですが、逆にアナログレコードが再ブームで非常に良く売れているという話をよく耳にします。その理由はいろいろあるようですが、1つには、デジタル音源でカットしている超音波領域が再生でき、これが心地よいと思う人が増えたこともあるようです。

これは、近年登場したハイレゾオーディオの特長とも共通します。

今回は、そんなハイレゾ音源が再生でき、当時国産スピーカーでは存在していなかったハイルドライバー(AMT(Air Motion Transformer)とも言います)方式を採用した弊社オリジナルスピーカーセットについてD-CLUEエンジニアの渡辺さんにお伺いしました。

渡辺さんは回路設計エンジニアでありながら、趣味でもうすぐ50年になるオーディオに関する幅広い知見がある方で、オーディオ機器や電子楽器の開発者に対して様々な知見を提供してこられました。

ハイルドライバー方式(Heil Driver)で独自開発

D-CLUEが2017年に開発したこのスピーカーは、弊社に参画する前の当時の渡辺さんが、当時国内メーカが採用していなかったハイルドライバー方式として独自開発していたツイータを、D-CLUEが当時の自治体ベンチャー補助金を得ながら、共同でスピーカーに仕立てたものです。

DCT渡辺さん

D-CLUEオリジナル ハイレゾスピーカーの特長

音量や生産効率を重視した当時主流のコーン型を採用したスピ―カーと違いハイルドライバー方式を採用した本スピーカには以下のような特長があります。

  • 一般的なスピーカーにみられるお椀のような振動子(音の発生源)とちがい、薄くて軽いフィルムを蛇腹状にした特殊な振動子をマウントしています。
  • 打楽器の音抜けが良く、中高域の立ち上がりも素早い。例えばバイオリンのような弦楽器や鳥のさえずりなど繊細かつリアルな音源をくっきりと鮮明に再現します。
  • 平面波という、中高音域の音が均一遠くまで同じように出せるという特長があります。均一で減衰の少ない再生音が、演奏の奥行き感と臨場感をもたらし、可聴位置を選ばない360度立体音場再生を可能にします。

ハイレゾはさらに心身をリラックスさせる効果もあるそうで、大学研究機関と一緒に当社のスピーカーを使って検証実験も行われたそうです。

ツイータ部。スリット内に蛇腹状のハイルドライバー型振動子が見える

大手オーディオメーカー視聴会での評価

「先ず音を聞くと打楽器のリアルさに誰もが一番気が付くと思います」と語ってくれた渡辺さん。

私も実際に楽器演奏のハイレゾ音源を聞いてみました。ドラム音がクリアに耳に入ってきますし、弦楽器は力強く伸びがあります。打楽器・高音域が得意という渡辺さんの言う通りでした。雨上がりの山の自然音源に変えてみると、木の葉から滴る水滴のパラパラという音は打楽器のような粒立ち。小鳥の声は本当に頭上でさえずっているようで、音の素人の私でも強いリアル感、臨場感を感じました。

実際に当時の音響メーカー何社かに対し、実機のプレゼンテーションを行ったそうです。その担当者さん達の評価についても教えてくれました。

  •  バイオリンの音色の立ち上がりが良い。
  •  打楽器の音(と仕上がり)が素晴らしいです。
  •  ギターの高音が良く、スピーカー素材のカラレーションが良い。
  •  現在主流となっているツイーターの金属的な音がしない。
  •  素材の泣きのような音が一切しない。癖がなく素直に音が出ている
  •  スピーカーの素材感を感じさせない、自然な音がする。
  •  再生音の情報量がとても多い。

私も聞いてみて納得しましたが、その当時のオーディオのプロの方々の客観的な評価も素晴らしかったのですね。

仕様概要

本スピーカーの仕様概要をまとめました。

形式:2WAY シリンダー型バスレフ
中高音域:コンパクト型ハイルドライバー
低音域 :8cmコーン型ウーファー
出力音圧レベル:85dB/W (1m)
周波数帯域:70Hz~50KHz(-10dB)
クロスオーバー周波数:2KHz

弊社展示ルームにてリスニング可能

このほど渡辺さんに実機を調整いただいたあと、現在弊社の展示ルームに設置。再生デモをお楽しみいただけるようにしました。弊社にお越しの際はぜひお試しください。

 

bookmark_borderPLL (その4)

僕はPLLの特徴は”時間を扱う”ことだと思っています。

時間を扱うと言う事は・・・リミッタ(制限)が無いとも言えます。電圧や電流なら普通は電源が供給できる範囲を超えた状態にはならないので、上限/下限があります。しかし、時間には上限も下限もありませんし、制限をかけようも無いのです。

なので、周波数差や時間差などの時間を電圧に変換する位相比較器は、なにかタイムマシーンのような特別な回路の様に思えます。位相比較器の話は別に機会にすることにして、今回は”ジッタ”について触れてみたいと思います。

PLLを設計すると”ジッタ(Jitter)”と言う単語を必ず目にします。この単語の英語の意味は・・・”神経質に振る舞う、イライラする”です。ジッタはPLL回路の色々なトラブルの原因になる事が多いので、ジッタと聞くと神経質にもなるし、イライラもしますが、電気用語での意味は”時間軸の雑音”と考えて良いと思います。

例えば、1MHzの発振器は1usec毎に1周期を繰り返し正弦波やパルスを出力しますが、この周期が1.1usecに成ったり、0.95usecになったりと出力するたびに間隔が異なることが、ジッタです。ジッタは雑音なのでジッタが全く無い信号はこの世にはありえません・・・もしあるとすれば、世界標準時を決める原子時計のパルスはジッタが無い(と決めた)と言えます。

雑音が大きくなると問題が起きるのが世の常で、ジッタも大きくなると問題を引き起こします。

S/N設計をするのと同じように、ジッタもきちんと設計しないとトラブルが発生します。

PLLのジッタに関連する機能は、大きく分けて2つに分かれます。それは、

(1)ジッタの少ないクロックを広い周波数帯で出力する事(シンセサイザー)
(2)ジッタだらけのクロックをきれいなクロックにして出力する事(ジッタクリーナー)

の2点だと思います。まずは、(1)についてです。

実は、PLLに不可欠な電圧制御発振器(VCO)は大きなジッタ源なのです。

VCOの制御信号に雑音があれば、その雑音に応じて周波数が変化し、周波数が変化するということは周期が変わるのでジッタになります。制御信号に全く雑音が無くても発振器のトランジスタや抵抗などから様々な雑音が出ているので、これらが周波数に変換されてジッタになって出力されます。VCOの感度(電圧 => 周波数の変換効率)が高いほど出てくるジッタも多く、出来るだけ広い周波数範囲を一つのVCOでカバーしようとした時には、ジッタも多くなることを覚悟する必要があります。ジッタの大きな特徴は、ほっておくとどんどん増えるって事です。

例えば、周波数が1Hzずれた場合0.1sec後には36°ずれ、0.2sec後には72°位相がずれてしまいます。”周波数(差)を時間で積分すると位相(差)になる”ので、周波数がちょっとでもずれていると、時間経過と共に位相ずれ(つまりジッタ)が増加します。

VCOのジッタを減らすには、ジッタを検出して”正しい位置”に”すばやく”戻す必要があります。

“正しい位置”は基準信号としてPLLに入力されます。これに使うのが水晶を使ったVCXOです。

この発振器は水晶に電圧をかけて固有振動数を取り出しているため、非常に周波数が安定していてジッタが少ないです。しかし、周波数の可変範囲が狭いため色んな周波数では使えません。

このジッタの少ないVCXOを基準としてPLL回路を構成し、VCOのジッタを補正すれば、広い周波数範囲でジッタの少ない信号を取り出すことが出来るようになります。

“すばやく”戻すにはPLLの応答速度を早くする必要があります。

ジッタはほっておくとどんどん増えるので、低い周波数の方(周期が長いほど)その量が多い事になります。PLLの応答が間に合う周波数であれば、基準からずれた位相を基準に合わせる事ができるので、ジッタが無くなる事になります。

PLLの応答速度は、オープンループ特性(PLL(その2)を参照ください)の利得が0dBとなる周波数とほぼ同じになります。上の図では1MHzなので、1MHzより遅いジッタが修正できることになり、その分のジッタはVCO出力からは無くなる事になります。

次回は、ビヘイビアモデルを使って応答速度とジッタの量の関係を確認してみたいと思います。(美斉津)

bookmark_borderPLL (その3)

今回は「PLL(その3)」です。

前回はパーツ(位相比較器、VCO)をビヘイビアモデルでモデル化し、PLL全体の周波数特性や過渡解析の例を紹介しました。

今回は、PLL特有に問題(キャプチャーレンジなど)に振れたいと思います。

実験室で”PLLがロックしない”といった叫びを聴いたことがあるでしょうか?僕は何度も叫びました。

では、なぜPLLがロックできないかと言うとそれば「位相比較器に入力される2つに信号の周波数差にフィルタが応答できない」からです。

別の言葉で言うと、周波数差がキャプチャーレンジより大きいとPLLは引き込めなくなってしまいます。

PLLに関する文献は山ほどあるので、キャプチャーレンジの計算は文献にまかせて、PLLが引き込めていない時には何が起きているのかを今までのビヘイビアモデルを使って調べてみたいと思います。

前回のVCOとPLL回路を今回も使います。回路定数も前回と同じで先ずは、

.param r0=510 r1=10k c0=1n r2=1k c1=10pとします。

この回路定数だと位相余裕も十分だし、入力する周波数frを9,10,11MHzとした場合のどれでも1.5usec程度で引き込めている事が過渡解析で分かります。

では、フィルタ時定数を変更(注1)してゲイン特性が0dBとなる周波数を1桁遅くした時にどうなるか調べてみると・・・・

注1).param r0=510 r1=1k c0=100n r2=1k c1=100p

位相余裕などは十分取れているので問題は無いのですが、過渡解析は”PLLがロックしない”と叫んでいます!

フィルタの時定数を変更したことで、位相比較器のビート信号(差周波数で振動する)をVCOに伝達できず、VCO制御電圧が十分振れずにVCO出力周波数が目標周波数に到達できないために、PLLが引き込めなくなってしまっています。

PLLを使ってジッタを抑圧する時にはPLLの帯域は狭いほう都合がいいので、ゲイン特性が0dBとなる周波数をなるべく低く設定しようとします・・・・そして、上のように罠にはまってしまうのです。

あらゆる電子回路で使われているPLLですが、確実に動く設計をするにはAC解析だけでは不十分で、必ず過渡解析が必要になります。しかし実際の回路をそのまま過渡解析に使っていたら莫大な時間が必要になり、非現実的です。そんな時に便利なビヘイビアモデルを紹介しました。

次回はエミッタ接地やソース接地の増幅器についての予定です。(美斉津)