ブログ | 技術情報 | ディー・クル―・テクノロジーズ | Page 7

bookmark_borderCMOS LSIの消費電力と動作周波数(2)

CMOS LSIの続きとなります。

FmaxのVe依存について

前回の最後に最大動作周波数について式(3)を導きました。

MOSトランジスタの飽和領域の特性について、RoはMOSトランジスタのダイナミック・オン抵抗(非飽和領域)、Gmは相互コンダクタンスで(飽和領域)で、この2つは下のような関係にあります。

下の図3にMOSトランジスタの飽和領域の特性を示します。

図3 MOSトランジスタの飽和領域における特性

この図3から、Gm(飽和領域)を求めると、(4)式で表されます。

(3),(4)式から最大動作周波数Fmaxは(5)式で表されます。

一般にCMOSは、フルスイング動作なので、Vgs=Veと表せます。またMOSトランジスタのデザイン・ルールをLとすると、スケーリング則により、tox、W、Lg、C はほぼLに比例する。以上から(5)式は(6)式の様に簡略化できます。

更にサブミクロン以下の微細なMOSトランジスタでは、キャリアの速度飽和により近似的にμ ∝√Lの関係にあるので、(7)式の様にも表現できる。

(6)式から電源電圧Veに対する最大動作周波数Fmaxの関係を図示すると図4の様になる。

図4 Fmax の Ve依存

今回は、式の変形を多用しましたが、最大動作周波数Fmaxが電源電圧Veと依存関係にあることをお分かりいただけたらうれしいです。

bookmark_borderCMOS LSIの消費電力と動作周波数(1)

CMOS LSIの強み

LSI(大規模集積回路)はCPUやメモリ、各種デジタル回路など、幅広いアプリケーションで使用されており、現代のエレクトロクス製品になくてはならない技術です。

LSIに搭載するトランジスタを小さくたくさん並べ集積度をあげるほどLSIの演算性能は上がるのですが、様々な課題が発生します。LSIの動作周波数を上げればトランジスタの処理速度は上がりますが、消費電力も上がります。トランジスタは0と1を電気的に切り替えるスイッチなので、スイッチを動かせば動かすほど当然電力消費が増加します。

CMOS LSIは、こうした課題に対処できるように、低消費電力でありつつ高速応答性がその特徴です。このブログでは、どのようにCMOSの技術特性を活用し、高い応答性能をどのように引き出していったのか、数式や図を使ってご紹介していきたいと思います。

CMOS LSIの Pc(消費電流)の求め方

さて、CMOS LSIの中で、電力はどのように供給され、どのように使われるのでしょうか。数式によって導き出してみます。まず始めに、CMOS LSIのPc (消費電流)の求め方式にまとめてみました。これは式(1)のように示すことができます。

式1

次にCMOS LSIのトランジスタで起きている電流の動きについて図1に示しました。

図1 CMOS LSIの消費電力

CMOSのMOSとは「MOSトランジスタ(金属酸化膜半導体トランジスタ)」のことで、このMOSトランジスタにはNチャネル型とPチャネル型があります、CMOS LSIはこれらのトランジスタを組み合わせて構成されます。LSI内部ノードおよび外部ピンの容量を充放電する際、この図で「P」と書いているPチャネル型MOS(PMOS)で充電し、「N」と書いているNチャネル型MOS(NMOS)を用いて放電されます。

一般にCMOS回路はフルスイング動作なので、Vi=Veとなります。したがって消費電力は式(1)を変形して、式(2)でも表すことができます。

すなわち消費電力Pcは電源電圧Veの2乗に比例するので、電源電圧Veの低減が低消費電力化に最も有効であることがわかります。

Fmax(最大周波数) の求め方

つぎに、最大動作周波数 “Fmax”についてです。

図2 CMOS LSI内部ノードの波形

図2でCMOS LSIの内部を簡易的に示してみました。ここで“Fmax”は、図2の”ノード①” をいかに早く充電できるかに等しいので、式(3)で表すことができます。

ここで想定していただきたいことがあります。単に電源電圧Veを下げると、CMOS LSIの最大動作周波数Fmaxが低下する問題が生じます。CMOS LSIの技術では、低消費電力でありながら高速応答性が保てることが特徴ですから、そのあたりを解決していく術であります。

次回は、電源電圧Veと最大周波数Fmaxの依存関係についてもう少し深く説明していきます。

bookmark_borderシステムLSI技術とは?

はじめまして。元ソニーの曽根田です。

元ソニー技術者として、特にアナログ回路とシステムLSIの分野で数百件の特許創出に貢献させていただいたエンジニアです。デジカメや携帯電話、ゲーム機など日本のエレクトロニクス業界が生み出したあらゆる製品に入っている基幹部品=LSIは暮らしを根底から支え、その進化は人々の生活スタイルをダイナミックに変化させてきました。LSIの技術進化・とくにシステムLSIの低消費電力化技術の進化はこれから先も世界を変え続けていくものと考えています。

そこで、先の未来を技術で支えていくであろう若手エンジニアに、システムLSIに関心興味を持っていただきたいと思い、本シリーズを開始しました。ご同輩のエンジニア様にも復習や最新動向をつかむ目的で見てもらえると嬉しいです。

全体構成は下記リンクにまとめています。 システムLSIの歴史を紐解きながら将来動向を踏まえつつ技術全体を網羅するテーマを設定し、順次拡充させて参ります。

※テーマ更新は順不同ですので、予めご了承ください。

システムLSI 教室 目次

システムLSI開発の楽しみ

システムLSIの開発は、技術的な挑戦と創造性を同時に味わえる仕事です。もっと良いモノ、小さいモノ、もっと優れたサービスを生み出したいという欲望、これを技術者がその経験を持ち寄って解決するためにアイデアをひたすら考え抜く。ここに醍醐味があります。そして皆様それぞれの業界での開発技術を通じて世界中の課題を解決し、世の中が良くなっていくことは素晴らしいことです。私は今でも技術好奇心が旺盛で新しい技術を学ぶことが好きです。皆様と共に学び成長していきたいと思っています。今日新たにシステムLSIの世界に足を踏み入れる皆さんに寄り添えることを誇りに思います。 さあ、システムLSIの世界へ一緒に飛び込んでみましょう!🚀