ブログ | UVをセンサで計測してみよう!⑦ ~外で実際に動作を確認してみよう ~実験編 | ディー・クル―・テクノロジーズ | Page 6

bookmark_borderUVをセンサで計測してみよう!⑦ ~外で実際に動作を確認してみよう ~実験編

なかなか実験の日程の調整ができず、実験日は2024/9/26(木)。夏?のぎりぎりになってしまいました。

作成したUVセンサを傘につけ実験

気象庁の計測値でみると、こんな感じです。

12時から20分ほど、会社近くの日産スタジアムに行くまでの見晴らしがよいところで実験しました。

ただ当日は晴れではあったのですが、太陽の周辺に雲がありまた風もあったのでなかなか同環境での実験ができませんでした。秋晴れ! という日にも実験してみたいですね。

気象庁での紫外線情報をリファレンスにオフセットをかける予定でしたが、実際に外にでて試しに測定してみたところセンサ値の紫外線情報にかなり差があり、今回はオフセットなしにして紫外線対策グッズでどうセンサ値が変わるかを確認したいと思います。

やっぱりリファレンスになるデバイスほしいですねー。

試した日傘(私物)はこの2つ

同環境での実験が難しかったので、試したのは2種の日傘だけになってしまいました。

①裏地が黒の日傘

②麻生地の日傘

麻生地のほうはデザインが気に入っておりましてかれこれ3年以上は使用しています。なので紫外線対策という面では効果が薄くなっている自覚はしています。。。デザインが好きなので買い替える予定はありませんが(^^)

では実験結果です。

実験結果

①裏地が黒で99.9%カットと保証がされていた日傘UVインデックス値の結果

②麻生地の日傘のUVインデックス値の結果

日傘(内)は、日傘(外)のUVインデックス値より大きく下がることが確認できました! しっかり紫外線防止効果があることが分かります。

また、お気に入りの麻生地の日傘も外に比べ約90%近く下がっているのは、個人的に大満足です。また快晴のときにまたいろいろなパターンで実験してみたいですね。

最後に、IoTの設計開発についてご相談したいことがございましたら、遠慮なくこちらのフォームにてお伝えください。

秋も紫外線はまだまだ強い日がありますから、日傘を使いつつ気を付けて過ごそうと思います。いつか、来年の夏の暑い晴れた日に実験再チャレンジしてご報告したいです! ではでは!

bookmark_borderUVをセンサで計測してみよう!⑥ ~外で実際に動作を確認してみよう ~準備編Ⅲ

組み立てたLeafonyをケースに入れよう

組み立てたLeafonyを目立たないようケースに入れて外で実験できるようにしたいと思います。ケースに入れなくても実験はできますが、都会は人の目も多いですし、持ち歩いて怪しまれないように。

って、よっぽどあやしいわ これ

さて、普段の業務だとケースというと”タカチケース”を購入して加工しているのですが、

 「今回はスピード重視で簡単に加工できる」

 「失敗してもすぐやり直せる」 をテーマに掲げて行います!

なぜって、いくら10月で30℃超えの気候とはいえ、ゆっくりしてると冬になってしまうので。

というわけで、何をするかは、ガジェット好きな皆様はもうお分かりですね。

私の大好きな100円ショップ ダイソー様で物色ですルンルン

ダイソーで発見した”便利ケース”

おなじみの収納ケースのエリア、衛生用品、キッチン用品…うろうろしたところ良さそうなものがありました!!

これです

お弁当を毎日作るお母さんお父さんの味方、マヨネーズケース!!

推しポイントは、3つ。

  • カッターで簡単に加工ができます。
  • サイズもスポっときれいには入りませんが少し押し込めば入りそうなところ。
  • しかも、蓋もあるのでここにUVセンサーを固定するのもできそう。

(この創造力を掻き立てるSPECが尊い…)

これに組み立てたLeafonyを入れて実験できるように少し加工していこうと思います!!
で、できあがったのがこちら!!

透明な蓋にセンサー用の穴をあけ、マスキングテープで固定にしました。

さらにさらに、傘にぶら下げるといったことができるように手持ちのチェーンをつけてみました。

え?「マスキングテープ、素敵に貼れませんか」ですって?

(想定よりうまく固定できなかったので試行錯誤しちゃったんですよね。。アハハ。。)

ままま、すごい手作り感満載ですが、これも味ですよアジ! <゜)))彡
準備は完了!! 実際に外で実験してきましょう!!

bookmark_borderシステムLSIのブレイクスルー技術② 動的電圧周波数スケーリング(DVFS)(2)

こんにちは。今日はDVFS機能搭載プロセッサとDVFSの動作原理についてお伝えします。

DVFS機能搭載プロセッサのブロック図

まず、DVFS機能搭載プロセッサについてです。図1に弊社が電源ICで用いているDVFS機能搭載プロセッサのブロック図を事例として示します。

図1 DVFS機能搭載プロセッサのブロック図

CPU内にクロック周波数/電源テーブルが配置され、負荷の大きさに対応するクロック周波数及び電源電圧Vddの指示情報をテーブルから出力します。

指示情報に基づきPLL及び可変電源を制御し、DVFSを実行します。すなわち、負荷の大きさに適合したクロック周波数、電源電圧を用いてDVFSが最適な値を選択実行することになります。

半導体企業の可変電源(DVFS対応電源IC)の製品例

半導体企業の可変電源(DVFS対応電源IC)の製品例を以下に示します。

半導体企業製品例
  1. TI LM25066A
  2. リニアテクノロジーLTC3886
3. ダイアログ・セミコンダクタDA9063
4. ルネサスISL69269
  5. オンセミコンダクタNCP81022
  6. ADI  LTM4680 
7. ディークルーテクノロジーズ DCT013C(開発品)
半導体企業のDVFS対応製品(2024年9月 弊社調べ)

また、Appleは、iOSなどのソフトウェアとAシリーズチップなどのハードウェアを密接に統合し、DVFSを効果的に活用しています。

Apple Mobile Processor における動的電圧スケーリング技術(DVFS)(2024年9月 弊社調べ)

  • プロセッサの負荷監視: プロセッサ内部のセンサーやモニタリング機能が、プロセッサの負荷状況を定期的に監視する。これには、タスクの実行中の処理負荷や電力消費の推定が含まれる。
  • 電圧と周波数の調整: 負荷の高い場面では、プロセッサの動作周波数を上げ、同時に電圧も増加させることで性能を最大限に引き出す。一方、負荷が低いときには、動作周波数を下げ、電圧を低く保ちながらも十分な処理能力を維持する。
  • スケーリングアルゴリズム: モバイルプロセッサには、動的電圧スケーリングを行う専用のアルゴリズムが組み込まれている。これらのアルゴリズムは、プロセッサの状態を評価し、最適な電圧と周波数の組み合わせを決定する。
  • バッテリー管理: バッテリーの残量や充電状態なども考慮に入れながら、電圧と周波数を調整する。

DVFSの動作原理

図2にDVFSの原理を示します。

図2 DVFSの原理

まず上段の説明です。一般に低消費電力化を図るため、SoCではゲーテッドクロックが用いられます。Gated Clockは負荷が軽い場合、所要の処理が終了するとクロックを止めます。これで、タスク処理割当時間後半にはクロックを止めるので、1動作時間を半分=消費電力1/2を図れます。

次に下段の説明です。DVFSではタスク処理割当時間丁度で処理が終了する様に、1/2の電源電圧、1/2のクロック周波数でSoCを動作させます。 すなわちDVFSはゲーテッドクロックに比べて、さらに1/4の消費削減を図れます。

なお、CMOSの特性から、クロック周波数に比例して電源電圧を下げる事ができます。

プロセスバラツキを考慮したDVFS機能搭載SoC/MPU/GPU

次に図3にプロセスバラツキを考慮したDVFS機能搭載SoC/MPU/GPUのブロック図を示します。

図3 プロセスバラツキを考慮したDVFS機能搭載SoC/MPU/GPUのブロック図

リングオシレータ(Ring Osc)の発振周波数からMOSトランジスタの閾値(Vth)を推定します。例えばVthが低い方向に0.05Vばらついた場合、回路の動作周波数が上がります。同一周波数で動作させる場合、電源電圧(Vdd)を下げる事ができるので、消費電力を更に低減できます。一般にVthが低下するとトランジスタのリーク電流が増加しますが、Vdd低減による低消費電力化により相殺できます。こうした工夫によりプロセスバラツキを考慮した設計ができます。

なお、SoCの作りに応じて、リングオシレータは複数個所に挿入されることがあります。

参考までに各CMOS世代におけるVthのプロセスバラツキを示します。

図4 各CMOS世代におけるVthのプロセスバラツキ(2024年9月 弊社調べ)

いかがでしょうか。
次は、動的電圧スケーリング(DVS)開発の背景をお伝えしようと思います。