ディー・クルー・テクノロジーズ Blog

bookmark_border反射 (4)

高周波の回路設計を行っていると、Sパラメータに必ず出会います。なぜSパラメータと出会わないといけないかと言うと、集中定数では扱えなくなってしまったからです。

Sパラメータ(Sパラ)とは

前回の様に高周波信号は反射を起こします。進行していくものと反射に依って逆方向に進むものとが有り、これらの表現の一つの方法がSパラメータです。

図1

図 1の様に回路網に対して左から入力される信号と出て行く信号、また右側にも入力される信号と出て行く信号が定義されています。つまり、右側も左側も進行波と反射波を考えているという事になります。(注:図でa1とb1は別の端子に見えますが実際は一つの信号線です。入力される信号と出てくる信号を区別するために2本に分かれているだけです)

Sパラとの出会い

私がSパラメータ(以下Sパラ)に出会ったのはHP(Hewlett Packard)のネットワークアナライザーに触ったときでした。高価な測定器だったので、めったに触ることが出来成ったのですが、どうしても満足いく特性が得られず“Sパラを測定してみろ”と先輩に言われて恐る恐る触ったのがきっかけでした。

横軸が周波数になっている測定器との始めての出会いでした。

実はSパラメータは日本人の黒川兼行さんが考案したものであったことをご存知でしょうか?1965年IEEEに発表された“Power Waves and the Scattering Matrix”と言う論文でSパラがこの世に発表されたとのことです。

Sパラとは「散乱行列」

SパラのSはScattering(散乱)からきています。

何が散乱しているのかと言うと・・・Wikipediaに依れば、

「n対の端子を持つ電気回路において、入力方向に進む波の振幅をa1・・・an 、出力方向に進む波の振幅をb1・・・bnとしたとき、次のように記述する。b1 = S11a1 + S12a2 + ・・・ + S1nanb2 = S21a1 + S22a2 + ・・・ + S2nan・・・bn = Sn1a1 + Sn2a2 + ・・・ + Snnan

これらの式を行列を用いて次のように表現する。

このS11・・・Snnを要素とする行列が散乱行列であり、行列の要素がSパラメータである。Sパラメータの各要素は複素数表現であり、回路の振幅に対する影響に加えて位相に対する影響も内包する。」(引用終わり)

であり、散乱行列と言うのを使うので、Sパラと呼ぶのだと分かります。

正直いうとSパラは私にはまだ分からないことの方が多いです。

SPICEでは電圧や電流を扱うことに慣れているのですが、なかなか電力の方向まで扱うことが少ないため、イメージがつかみにくい事が原因ではないかと思います。

そこでSPICEでSパラを扱うことが出来る回路を紹介したいと思います。

Sパラを回路で理解する

図3

上の回路は端子PORTに接続された回路網のS11を計算して端子S11に出力してくれる回路です。

回路網で発生している電圧(端子PORTの電圧)を依存電源E0で検出し、信号源インピーダンスR0で発生している電圧を依存電源E1で検出して、前者の電圧から引いているだけです。

図4

今まで使っていた伝送路のS11を計算してみましょう。終端抵抗の値Rtmは50Ωです。

図5

低周波ではS11は低い値を保っています(つまり、反射が少ない)が、高周波に成ると

終端抵抗と並列に入っているコンデンサC0(10pF)の影響でS11が増加します。

図 1から

と表されます。もし、a2=0ならば(つまり、回路網の右側から電力が入力されない時)

となって、反射係数と同じ計算式となります。つまり、

と書くことが出来て、S11が分かれば回路網のインピーダンスZlがわかる事に成ります。

例えば200MHzのZlは終端抵抗Rtm=50Ωと10pFとの並列なので、

に成っているのでS11は、

となり、シミュレーションがほぼ正しいことが分かります。

非常に興味深いSパラの世界

伝送路の右から2つ目の特性インピーダンスZoを意図的に(製造誤差等を想定)60Ωにした結果も図 5にプロットしました。

この結果がネットワークアナライザーの実測とどのくらいの精度で一致しているかの確認はできないですが、大きなずれはないように思います。

高周波の世界でも、相手に伝えたいことがほんとに伝わるのには時間がかかることや、今までの環境と異なる環境にはスムーズに入っていけない事など、人の社会と同じようなことが起きているのが非常に興味深いです。

次回もこのSパラの世界を紹介する予定です。

bookmark_border反射 (2)

今回も“反射”について話をしてみたいと思います。

終端抵抗についてのこれまでの認識

終端抵抗をOpenにしても波形のひずみが出ないことに驚きました。もちろん終端抵抗が特性インピーダンスと整合していないので、思いっきり反射はするのですが、終端抵抗の両端、つまりVoutの波形は歪んでいません。

今までの理解は「終端抵抗で最初の反射が発生するので、この箇所の整合は一番重要でここさえ抑えておけば、後は少し整合が悪くても波形は歪まない」でした。

図1

図 1は信号源インピーダンスを5mΩで、終端抵抗を50Ωにした場合です。当たり前ですが終端側で整合しているので、反射波が発生していません。このとき信号源には3.3V/50Ω=66mAの電流を流す能力が必要になります。

信号源インピーダンスを50Ωにして、終端抵抗を50GΩとする

図2

図 2は信号源インピーダンスを50Ωにして、終端抵抗を50GΩとした結果です。

終端側では整合していませんので、反射波が発生します。しかし、受信端の波形V(vout)は図 1とさほど変わりません。また、信号源に流れている電流は図 1の半分で済んでいます。更には反射波が同じ量で逆向きの電流を流しているので、信号源に流れる平均電流、つまり直流の電流は打ち消されてゼロになっています。終端抵抗が50GΩ(OPEN)なので、直流電流が流れないと言ってしまえばその通りなのですが、感覚的には納得いかないところです。こうなると、終端側に整合抵抗を入れるよりも信号源側に整合抵抗を入れた方が消費電力が少なくて済むので、有利だと言うことになります。

寄生デバイスの影響を考慮した反射とインピーダンス整合

今までは終端側が理想的な状態、つまり寄生デバイスの影響がない事を前提にしてきました。実際には終端側(例えば、ICの入力端子)には寄生容量などがついています。

図3

寄生容量=10pFとしたときの反射の様子

例えば図 3の様に寄生容量=10pFとしたときの反射の様子をシミュレーションしてみると次の様になります。

図4
図5

図 4が終端側で整合したもの、図 5が信号源側で整合したものです。

両図とも早い周波数成分の立上りや立下りの部分が寄生容量C0(10pF)の影響で反射していることが分かります。これは寄生容量の影響で終端側の入力インピーダンスが高周波になるほど低くなっているためです。また終端部分の波形V(vout)を比較してみると、信号源側で整合した方の波形がなまっているのが分かります。単に消費電力の点では信号源側の整合が有利なのですが、伝送速度と寄生容量に依っては信号源側での整合では十分な特性が得られないことがあるので、終端側との併用も検討する必要が出てきます。両方で整合するのが一番なのですが、消費電力や性能を、寄生容量や伝送路の長さなどの制約条件から最適化することが設計者の腕の見せ所と言えると思います。

パルス幅を長くして、反射波と重ねる

今まではパルスの幅が2nsecと短くして反射波が重ならないようにしてきました。

図6

図 6はパルス幅を20nsecと長くして、反射波と重なる様にしたものです。なお、信号源インピーダンスRsを40Ω(すこし反射します)、終端インピーダンスRtmを50GΩ(全反射です)としています。

終端側のV(vout)にはあまり影響が見られないですが、伝送路内のV(v3)では進行波と反射波が重なるため振幅が2倍になる箇所が出てきます。

例えば、伝送路の中間(例えばv3)から信号を取り出すように信号を分配する仕組み(mini-LVDSインターフェースなど)では要注意です。

さらに、複数のパルスを扱う

今までは孤立パルス(1個だけ)を扱ってきましたが、実際には複数のパルスが使われます。

図7

図 7の様に、前のパルスの反射に依って発生した2回目の進行波と次のパルスが重なると終端側の電圧に干渉として現れます。

反射は発生させないことに越した事は無いですが、反射波をいち早く整合させて消失させる事が大切で、信号源側と終端側の両方で反射を繰り返すと(多重反射が起きると)、自パルス以外の波形にも大きな影響を与える事に成ります。

いままでは過渡解析を使って反射を説明してきましたが、次回は小信号解析(AC解析)も使って、もう少し反射と格闘してみたいと思います。

bookmark_border反射 (1)

今回は“反射”について話してみたいと思います。

このネタは<インピーダンスマッチング>でもお話しましたが、そのときは感覚的な説明をさせてもらったので、今回は少し技術的に説明をしたいと思います。

インピーダンス整合とは?

“インピーダンス整合”とか“インピーダンスマッチング”と言う単語は高周波回路を設計した人なら一度は聞いたことがあると思います。整合とは“整い合う”なので、どことどこのインピーダンスが整うのかというと、信号源インピーダンスと伝送路の特性インピーダンスが同じであること、また、伝送路の特性インピーダンスと受信機の入力インピーダンス(終端抵抗とも言います)が同じであることを“インピーダンスが整合する”といいます。

伝送路の特性インピーダンスって何かという辺りから始めたいと思います。

伝送路の特性インピーダンスとは?

Wikipediaよれば、

『特性インピーダンスは、一様な伝送路を用いて電気エネルギーを伝達するときに伝送路上に発生する電圧と電流の比率。』

さらに、

『単位長さあたりのインダクタンスがLの電気伝導体と、単位長さあたりの静電容量がCの絶縁体を組み合わせた損失のない均一な伝送路の特性インピーダンスZ0は次式で表される。』

と書いてあります。簡単に言うと・・・

同軸やストリップラインはインダクタとコンデンサの組み合わせで出来ていて、その比率が特性インピーダンスになります。

特性インピーダンス50Ωの同軸にデジタルマルチメータを当てて抵抗を測定しても、どこにも50Ωは有りません(同軸の芯線の端と端を測定しても50Ωになりません)。

代表的な伝送路の特性インピーダンスを形状から求める計算式を下記にまとめました。

図1

なお、式の中のεrは比誘電率で使う材料で決まります。

インピーダンス50Ωの伝送路に信号を入れた時の波形

特性インピーダンスが(例えば)50Ωの伝送路に信号を入れると、どんな波形になるかを確認してみましょう。

図2

信号源V0は出力インピーダンスを可変できるように抵抗R1をつけています。伝送路T0~T3は中間の波形も観測できるように4分割にしました。

図3

信号源インピーダンスR1=50Ω、終端抵抗R0=50Ωの状態で、High幅が2nsecのパルス信号を入力した結果です。ストリップラインの特性インピーダンスZo=50Ωで、その長さは200cmです。(注意:長さが200cmのストリップラインに出会ったことはないですが、ここではオーバーに表現するために意図的に長くしました)

信号源V0から出力したパルスがR1を通過してストリップラインを伝播して、終端側端子Vout(青)には15nsecに波形が到達していることが分かります。

終端抵抗を外した時の変化

続いて終端抵抗R0を外して(R0=50GΩ)みましょう。

図4

終端抵抗が特性インピーダンスとずれたため反射が発生し、信号源側に反射波が伝播していきます。また終端抵抗がなくなった分、終端側の振幅Voutが2倍になっています。しかし、不思議なことにストリップラインの入力Vinやストリップラインの中を通過していく波形V1~V3に振幅は半分のままです。半分と成っているのが気になるので、信号源側の抵抗R1を50Ωからずらしてみましょう

抵抗とストリップラインが抵抗分割を形成する不思議

図5

上の図は信号源側の抵抗R1=40Ωとした結果です。ストリップライン入力電圧Vinが図 4より少し高くなっているのが分かるでしょうか? 信号源V0の出力Vsを抵抗R1とストリップラインが抵抗分割してVinを作っているのです。普通の抵抗とストリップラインは異質なものなのに、これらが抵抗分割の様に電圧を作っている事が私には驚きです。

信号源側の抵抗R1が特性インピーダンスと異なるので、反射波はふたたび抵抗R1で反射し、進行波としてストリップラインの中にはいって行きます。抵抗R1を40オームとした場合はGNDより下に進行波が発生します(図 5参照)が、抵抗R1を60Ωとした場合はGNDより上に進行波が発生します(図 6参照)

エネルギー減衰しない反射波により、電源電圧を超えた電圧が発生する

それでは、信号源側の抵抗R1=1Ω、終端抵抗R0=50Gの場合はどの様になるかと言うと・・・

図7

終端側のVoutには+6Vや-6Vが発生する事に成ります。電源電圧=3.3Vなのになぜ?

波は反射するとエネルギーが減衰しないので、いつまでも反射を繰り返します。その結果、電源電圧を超えた電圧やGND以下の電圧が発生することになります。

この端子にもしもLSIなどの最大定格が低いデバイスが繋がっていたら・・・LSIが壊れたと騒ぐこととに成ってしまいます。

次回も反射と格闘してみたいと思います。

bookmark_border反射 (5)

反射の周波数特性と波形

Sパラメータと反射

今回もSパラメータについてもう少し紹介したいと思います。

S11が入力側(左側)の反射量を示すなら、S22は出力側(右側)の反射量を示します。

そしてS21が入力から出力への(左から右への)電力伝達量を、S12は出力から入力への(右から左への)電力伝達量を示します。

図1

Sパラメータの中で先ず注目するのは、S21ではないでしょうか。

Sパラメータで、LSIの内部波形を推定できる

非測定物の周波数特性がどうなっているか、ピーキングは無いか? などを先ず確認する時に使います。そして次に注目するのがS11やS22ではないかと思います。 S11やS22に注目する理由は、実際に触ることが出来ないLSIの内部の波形を推定すること出来るからではないでしょうか。

図2

寄生素子の影響を特定する手助けとなるSパラメータ

例えば、実際の評価でなぜかエラーを発生してしまうLSIがあったとします。寄生素子の影響であることはなんとなくわかっているのですが、どう調べたら良いか分からないこともあると思います。そんな時、S11が原因究明の手助けになってくれます。

まずLSIの等価モデルを想定します。上の図の様に最も簡単なものを使い、インダクタL0はボンディングワイヤーを、コンデンサC0はPADと入力トランジスタの寄生容量を等価するものとします。

PAD容量や入力トランジスタの寄生容量はデバイスの特性なので、デザインマニュアルなどを参照すればある程度の数字を得ることができると思います。問題なのはインダクタで、ボンディングワイヤーの長さ(特にループになっている分)や、PKGの端子がどの程度のインダクタになっているかを知るには骨が折れます。

S11からエラー原因が特定されない

上の回路で、Cp=1pFとしてインダクタLpを変化(2n, 5n,10n,20nH)させたときのS11を計算した結果を下に示します。

図3

等価回路を良く見ると、L/Cの直列共振回路となっています。なので、共振周波数では整合抵抗R0に非常に低いインピーダンスが並列に入っている事に成ります。そのためS11は全反射(入力した電力の全てを反射する)し0dBを示す事に成ります。もし、実測したS11に全反射となる周波数があれば、その周波数を合わせるようにインダクタを計算して求めることが出来ます。 しかし、S11が全反射する周波数から寄生インダクタを求めても、なぜエラーが発生するかの説明は出来ません。そこで、等価回路のVout端子の周波数特性を確認してみます。

等価回路のVout端子の周波数特性を確認する

図4

S11の全反射する周波数で、ピーキングが発生していることが分かります。

入力波形にはリンギングが表れないことがある

このまま過渡解析をしてみると・・・

図5

大きなリンギングが発生して、エラーになっていることが分かります。更に厄介なことはLSIの入力波形を見ると分かります。

図6

LSIの入力波形には大きなリンギングは現れていません!

つまり、このLSIを評価するときに、LSIの端子Vinをプローブで観測しても上の図の様に“少しリンギングが有るけど、エラーするほどではないので、入力部には問題はない”と済ましてしまうと、永遠にエラーするなぞが分からないままになってしまいます。

入力部とSパラメータの測定結果比較が重要

簡易的でも、入力部の等価モデルとS11の測定結果を比較することで、実測できない内部の波形を推定することが出来ます。 ところで、LVDSなどの高速インターフェースでは整合抵抗をLSIの中に搭載することが一般的です。上の回路例では、整合抵抗R0はLSIの外部に実装していますがこれをLSI内に移動した場合の効果はと言うと・・・

図7
図8
図9

その効果が圧倒的なのは波形(図5が外部整合、図9が内部整合)を見れば一目瞭然です。

整合抵抗(終端抵抗)は偉い

インピーダンス整合用の抵抗R0は、終端抵抗とも呼びます。そこ場所で今までの伝送路が終わるのでこの名前なのだと思うのですが、やはり終端抵抗は最後につけないとその効果が出ないと言うことだといってしまえばそうなのですが・・・寄生容量やインダクタや伝送路のミスマッチ、歪を全て背負って、終端する抵抗って偉いと思うのです。

次回はこのSパラメータと他のパラメータの関係について紹介していきたいと思います。


bookmark_border反射 (6)

反射を使って何かを調べると言うと・・・TDRという測定方法があるのをご存知ですか?

“TDR”をGoogleで検索すると・・・ホテルご予約の案内。東京ディズニーリゾート・・・の略でもあるのですが(汗) ここではTime Domain Reflectometry の略です。

TDRという測定法

直訳すれば「時間軸の反射測定」となります。今まで反射の波形を時間軸で説明してきたのに何をいまさらと思われるかも知れませんが、この測定はSパラメータと同じく反射を測定する方法のひとつで、反射がどこで発生しているか、その場所を突き止めることが出来ます。

昔の高価なオシロスコープにはTDR測定用の端子があって、ここに同軸ケーブルを経由して評価ボードを接続します。そうすると評価ボード(非測定物)のどの辺りで反射が起きていて、しかもそれが特性インピーダンスより大きいのか小さいのかもわかってしまうと言う優れものです。

評価ボードのコネクタ部分が悪いのか、LSIの入力が駄目なのか、ストリップラインの曲がっている場所で反射してるのか をオシロスコープの波形を見ればすぐに分かり、しかも、指で触るとリアルタイムに波形が変化したので、非常に直感的で、まさに体で感じることが出来る優れた測定方法です。まだ駆出し頃、反射しているポイント指で探って、そこに指と同じ回路を追加して反射の影響を出来るだけ減らすことと格闘していました。

ちなみな私の人差し指の等価回路は、10pFと5.1Ωの直列でした。

TDRのメリット

インピーダンスの整合を調整する方法にはスミスチャートを使う方法(別の機会に紹介したいと思います)があります。しかしこの方法はRF回路などインピーダンスを整合させる周波数範囲が狭い場合には非常に有効ですが、NRZ信号などの様に信号成分が広帯域におよんでいて、広い周波数範囲でインピーダンス整合をとる場合には有効とは言えません。

その点、TDRは非常に広い周波数範囲でインピーダンスの整合を調整するのに都合の良い測定方法です。

反射波を用いたTDRの測定原理とは

TDRの測定原理は非常に簡単です。非測定物(なぞのモジュール)に向かって非常に立ち上がり時間の短いパルスを送出し、その反射波を観測するだけです。

図1

あるモジュールの端子に同軸ケーブルを接続してTDRを測定した結果、次の様な波形が出てきたとします。

図2

つまり、V(vs):青の信号を送信した結果、信号源のインピーダンス整合をする抵抗RsにV(vin):緑の波形が現れたとします。実はこの波形から色んなことがわかるのです。

TDR測定で分かること

  1. 波形の落ち着いた場所が中心(0.5V)から少し上にずれている。
    これは、終端抵抗が信号源インピーダンスから少し大きめになっていることを意味します。長い時間その値を保っていられるのは直流に近い成分であることを意味しているので、直流結合で接続されている終端抵抗が50Ωより10%ほど大きめになっていることが分かります。LSI内に終端抵抗を実装した場合は有りうることです。

  2. 終端される前に一旦、電圧が低くなっています。短い時間だけ、つまり高周波でインピーダンスが低くなると言うことは・・・信号線とGNDの間にコンデンサが入っていることを意味します。つまり、終端抵抗と並列にコンデンサが付いていることが分かります。

  3. 少し手前に来ると、インピーダンスが高くなっている部分があります。短い時間だけ、つまり、高周波だけインピーダンスが高くなると言うことは・・・信号に直列にインダクタが入っている事に成ります。原因はモジュールを空けないと分かりませんが、信号の接続VIAかもしれません。

  4. 更に手前に戻って来ると、再びインピーダンスが低くなっている場所があります。ここにも信号とGND間にコンデンサが入っていることが分かります。この部分はモジュールの入り口なので、コネクタと接続するためにボードのパターンが太くなっているのかもしれません。

  5. インピーダンスがずれている間の時間がおよそ1.4nsecで、2箇所が同じ位の間隔になっていることが分かります。もし、モジュール内のボードがFR-4(ガラスエポキシ基板の代表的な例)で作られているとすれば、伝播遅延時間は70psec/cmなので、1.4nsecは20cmで作られる事に成ります。反射波は行って帰ってきていますので、ボード上では約10cmの距離に換算できます。

ブラックボックスを開封せずに波形で推定する

TDR測定の結果と答え合わせ

なぞのモジュールを開けた結果は次の通りです。

図3

ほぼ、波形から推定した結果を同じ回路となっていることが分かります。

なおTDRの更に詳しくは、下記を参照してください。

https://literature.cdn.keysight.com/litweb/pdf/5989-4149JAJP.pdf

TDR測定は、中を触ることの出来ない回路(例えば、モジュールやLSIなど)のインピーダンス整合がどこでずれているかを外部から知ることが出来るので、非常に重宝な測定方法です。

超音波も反射波を用いた測定法の1種

反射波を使った方法は他にもあり、超音波を発射して、反射波を解析することで反射を起こした物体の状態(硬さなど)や距離を求めて映像にする超音波診断装置は、良い代表例だと思います。

超音波
https://ja.wikipedia.org/wiki/%E8%B6%85%E9%9F%B3%E6%B3%A2%E6%A4%9C%E6%9F%BB

ここまで書いて、イルカは超音波診断装置を何万年も前から使っていたのだと、気が付きました(汗)

光を捉えると言う点では人も目も優れていて、ろうそくの光でも夏の海岸でも本が読めます。

しかし、自然に入ってくる光(情報)を見るだけではなく、自ら音波(言葉や行動)を発して、その反射(対話)を感じることで、目では見えない相手の内側や本質や大切なものが見えてくるのだ と教えられた気がしています。


bookmark_border反射 (3)

前回までは“反射”がどの様に波形に影響を与えるか過渡解析を使って説明をしてきました。今回は小信号解析(AC解析)も使ってもう少し反射について説明したいと思います。

過渡解析を使わず、AC解析を用いる

線形解析ができるのか確認

“反射”と言うと進行する波と反射する波があり、それらが重なり合うので、なんとなく線形解析が出来ないような気がするのですが、どうなるか確認してみたいと思います。

図1

前回使った回路を図 1に示します。信号源インピーダンスRs=40Ω(多重反射を意図的に発生させます)で、終端側の抵抗Rtm=50G(Open)、寄生容量C0=10pFとしています。また、各伝送路超は50cmとしていますので、全部で2mの長さになります。電圧源V0を信号源として、Voutまでの周波数特性を計算した結果を次に示します。

図2

17MHz辺りでピーキングが発生して、それが繰り返されているように見えます。

横軸をリニアに変更した結果を下に示しました。

図3

横軸をリニアにすると、同じ形の繰り返しになっていることがよく分かります。周波数は35MHzで形も正弦波のように見えます。

横軸が時間であれば、よくある波形なのですが、このグラフの横軸は周波数です。

周波数特性を知る

あまり見ない形になっているので、これで良いのか少し不安では有りますが、気にせず先に行こうと思います。

先ずは35MHzと言う数字はどこから来ているのか考えてみることにします。 35MHzの一周期は・・・ です。

伝送路の長さは50cm×4=200cm。伝送路の計算に用いている遅延は70psec/cmとしています(普通のFR-4はこのくらいの遅延になります)。 なので、信号の遅延量は、70ps×200cm=14nsecとなります。14nsecと言うことは の信号ならちょうど一周期分がぴったり伝送路に入ります。

と成ると、 周期では35.7MHzと成り、周期では17.9MHzと成ります。

図4
図5

周波数特性でピークと成る周波数は伝送路の中に入れると、“腹”が反対側に表れ、反対に谷となる周波数は、“節”が伝送路の反対側に現れる法則があるようです。 ときどき“反射の影響が出るのはどのくらいの周波数からか?”と聞かれることがあるのですが“伝送路長が 波長になる周波数からかな”と、答えていました。

が図5を見ると、 “伝送路長が 波長になる周波数から。場合に依っては 波長から”と答えないといけなかった事が分かってしまいました(大汗)

例えば、10cmのストリップラインをFR-4基板に引いたときは・・・

この周波数あたりから利得特性に盛り上がりが現れ、358MHzではピークとなるので、180MHz辺りの周波数では波形に影響が出てくると考えるべきです。

試しに反射を線形解析で解いてみる

ところで、周波数特性が分かっていると言うことは、逆フーリエ変換すれば時間軸波形を求めることが出来るかもしれません。“反射”は周波数特性やフーリエ変換と言った線形解析では解けないというイメージがあるのですが、試してみたいと思います。

入力波形

図6

この波形をフーリエ変換すると下記のような周波数成分に分解できます。

図7

この各周波数成分に下の周波数特性を掛け算して・・・

伝送路の周波数特性

図8

その結果を逆フーリエ変換すると・・・下のような波形になります。

逆フーリエ変換による波形出力

出力波形

図9

過渡解析と逆フーリエ変換による波形の違い

同じ事を過渡解析で計算してみると、

図10

と成って、ほぼ同じ波形を得ることができました。注目すべきは、1個目のパルスです。

周波数特性+逆フーリエ変換を使った結果では1個目のパルスから歪んでいますが、過渡解析は最初のパルスは歪んでいません。どちらの結果を信じれば良いのでしょうか。

ひずみが発生する原因は多重反射です。パルスが伝送路内に入ってまだ時間が経過してない間は多重反射が起きていない(反射がまだ発生していない)ので、最初のパルスは歪まずに到達できるのです。この辺まで計算してくれる過渡解析の方がより現実に近い計算結果を示していると言えます。

しかし、過渡解析には時間がかかります。伝送路が複雑になると指数関数的に計算時間が増えていきます。反面、周波数特性(AC解析)+逆フーリエ変換は伝送路の複雑でも殆ど計算時間は変わらないです。最初のパルスを無視すれば、十分使えるのではないかと思います。

今回は“反射”を過渡解析を使わないで計算する方法を紹介しました。

次回は、反射+線形解析となると避けては通れないSパラメータに触れたいと思います。