ディー・クルー・テクノロジーズ Blog

bookmark_border反射 (4)

高周波の回路設計を行っていると、Sパラメータに必ず出会います。なぜSパラメータと出会わないといけないかと言うと、集中定数では扱えなくなってしまったからです。

Sパラメータ(Sパラ)とは

前回の様に高周波信号は反射を起こします。進行していくものと反射に依って逆方向に進むものとが有り、これらの表現の一つの方法がSパラメータです。

図1

図 1の様に回路網に対して左から入力される信号と出て行く信号、また右側にも入力される信号と出て行く信号が定義されています。つまり、右側も左側も進行波と反射波を考えているという事になります。(注:図でa1とb1は別の端子に見えますが実際は一つの信号線です。入力される信号と出てくる信号を区別するために2本に分かれているだけです)

Sパラとの出会い

私がSパラメータ(以下Sパラ)に出会ったのはHP(Hewlett Packard)のネットワークアナライザーに触ったときでした。高価な測定器だったので、めったに触ることが出来成ったのですが、どうしても満足いく特性が得られず“Sパラを測定してみろ”と先輩に言われて恐る恐る触ったのがきっかけでした。

横軸が周波数になっている測定器との始めての出会いでした。

実はSパラメータは日本人の黒川兼行さんが考案したものであったことをご存知でしょうか?1965年IEEEに発表された“Power Waves and the Scattering Matrix”と言う論文でSパラがこの世に発表されたとのことです。

Sパラとは「散乱行列」

SパラのSはScattering(散乱)からきています。

何が散乱しているのかと言うと・・・Wikipediaに依れば、

「n対の端子を持つ電気回路において、入力方向に進む波の振幅をa1・・・an 、出力方向に進む波の振幅をb1・・・bnとしたとき、次のように記述する。b1 = S11a1 + S12a2 + ・・・ + S1nanb2 = S21a1 + S22a2 + ・・・ + S2nan・・・bn = Sn1a1 + Sn2a2 + ・・・ + Snnan

これらの式を行列を用いて次のように表現する。

このS11・・・Snnを要素とする行列が散乱行列であり、行列の要素がSパラメータである。Sパラメータの各要素は複素数表現であり、回路の振幅に対する影響に加えて位相に対する影響も内包する。」(引用終わり)

であり、散乱行列と言うのを使うので、Sパラと呼ぶのだと分かります。

正直いうとSパラは私にはまだ分からないことの方が多いです。

SPICEでは電圧や電流を扱うことに慣れているのですが、なかなか電力の方向まで扱うことが少ないため、イメージがつかみにくい事が原因ではないかと思います。

そこでSPICEでSパラを扱うことが出来る回路を紹介したいと思います。

Sパラを回路で理解する

図3

上の回路は端子PORTに接続された回路網のS11を計算して端子S11に出力してくれる回路です。

回路網で発生している電圧(端子PORTの電圧)を依存電源E0で検出し、信号源インピーダンスR0で発生している電圧を依存電源E1で検出して、前者の電圧から引いているだけです。

図4

今まで使っていた伝送路のS11を計算してみましょう。終端抵抗の値Rtmは50Ωです。

図5

低周波ではS11は低い値を保っています(つまり、反射が少ない)が、高周波に成ると

終端抵抗と並列に入っているコンデンサC0(10pF)の影響でS11が増加します。

図 1から

と表されます。もし、a2=0ならば(つまり、回路網の右側から電力が入力されない時)

となって、反射係数と同じ計算式となります。つまり、

と書くことが出来て、S11が分かれば回路網のインピーダンスZlがわかる事に成ります。

例えば200MHzのZlは終端抵抗Rtm=50Ωと10pFとの並列なので、

に成っているのでS11は、

となり、シミュレーションがほぼ正しいことが分かります。

非常に興味深いSパラの世界

伝送路の右から2つ目の特性インピーダンスZoを意図的に(製造誤差等を想定)60Ωにした結果も図 5にプロットしました。

この結果がネットワークアナライザーの実測とどのくらいの精度で一致しているかの確認はできないですが、大きなずれはないように思います。

高周波の世界でも、相手に伝えたいことがほんとに伝わるのには時間がかかることや、今までの環境と異なる環境にはスムーズに入っていけない事など、人の社会と同じようなことが起きているのが非常に興味深いです。

次回もこのSパラの世界を紹介する予定です。

bookmark_border反射 (2)

今回も“反射”について話をしてみたいと思います。

終端抵抗についてのこれまでの認識

終端抵抗をOpenにしても波形のひずみが出ないことに驚きました。もちろん終端抵抗が特性インピーダンスと整合していないので、思いっきり反射はするのですが、終端抵抗の両端、つまりVoutの波形は歪んでいません。

今までの理解は「終端抵抗で最初の反射が発生するので、この箇所の整合は一番重要でここさえ抑えておけば、後は少し整合が悪くても波形は歪まない」でした。

図1

図 1は信号源インピーダンスを5mΩで、終端抵抗を50Ωにした場合です。当たり前ですが終端側で整合しているので、反射波が発生していません。このとき信号源には3.3V/50Ω=66mAの電流を流す能力が必要になります。

信号源インピーダンスを50Ωにして、終端抵抗を50GΩとする

図2

図 2は信号源インピーダンスを50Ωにして、終端抵抗を50GΩとした結果です。

終端側では整合していませんので、反射波が発生します。しかし、受信端の波形V(vout)は図 1とさほど変わりません。また、信号源に流れている電流は図 1の半分で済んでいます。更には反射波が同じ量で逆向きの電流を流しているので、信号源に流れる平均電流、つまり直流の電流は打ち消されてゼロになっています。終端抵抗が50GΩ(OPEN)なので、直流電流が流れないと言ってしまえばその通りなのですが、感覚的には納得いかないところです。こうなると、終端側に整合抵抗を入れるよりも信号源側に整合抵抗を入れた方が消費電力が少なくて済むので、有利だと言うことになります。

寄生デバイスの影響を考慮した反射とインピーダンス整合

今までは終端側が理想的な状態、つまり寄生デバイスの影響がない事を前提にしてきました。実際には終端側(例えば、ICの入力端子)には寄生容量などがついています。

図3

寄生容量=10pFとしたときの反射の様子

例えば図 3の様に寄生容量=10pFとしたときの反射の様子をシミュレーションしてみると次の様になります。

図4
図5

図 4が終端側で整合したもの、図 5が信号源側で整合したものです。

両図とも早い周波数成分の立上りや立下りの部分が寄生容量C0(10pF)の影響で反射していることが分かります。これは寄生容量の影響で終端側の入力インピーダンスが高周波になるほど低くなっているためです。また終端部分の波形V(vout)を比較してみると、信号源側で整合した方の波形がなまっているのが分かります。単に消費電力の点では信号源側の整合が有利なのですが、伝送速度と寄生容量に依っては信号源側での整合では十分な特性が得られないことがあるので、終端側との併用も検討する必要が出てきます。両方で整合するのが一番なのですが、消費電力や性能を、寄生容量や伝送路の長さなどの制約条件から最適化することが設計者の腕の見せ所と言えると思います。

パルス幅を長くして、反射波と重ねる

今まではパルスの幅が2nsecと短くして反射波が重ならないようにしてきました。

図6

図 6はパルス幅を20nsecと長くして、反射波と重なる様にしたものです。なお、信号源インピーダンスRsを40Ω(すこし反射します)、終端インピーダンスRtmを50GΩ(全反射です)としています。

終端側のV(vout)にはあまり影響が見られないですが、伝送路内のV(v3)では進行波と反射波が重なるため振幅が2倍になる箇所が出てきます。

例えば、伝送路の中間(例えばv3)から信号を取り出すように信号を分配する仕組み(mini-LVDSインターフェースなど)では要注意です。

さらに、複数のパルスを扱う

今までは孤立パルス(1個だけ)を扱ってきましたが、実際には複数のパルスが使われます。

図7

図 7の様に、前のパルスの反射に依って発生した2回目の進行波と次のパルスが重なると終端側の電圧に干渉として現れます。

反射は発生させないことに越した事は無いですが、反射波をいち早く整合させて消失させる事が大切で、信号源側と終端側の両方で反射を繰り返すと(多重反射が起きると)、自パルス以外の波形にも大きな影響を与える事に成ります。

いままでは過渡解析を使って反射を説明してきましたが、次回は小信号解析(AC解析)も使って、もう少し反射と格闘してみたいと思います。

bookmark_border反射 (1)

今回は“反射”について話してみたいと思います。

このネタは<インピーダンスマッチング>でもお話しましたが、そのときは感覚的な説明をさせてもらったので、今回は少し技術的に説明をしたいと思います。

インピーダンス整合とは?

“インピーダンス整合”とか“インピーダンスマッチング”と言う単語は高周波回路を設計した人なら一度は聞いたことがあると思います。整合とは“整い合う”なので、どことどこのインピーダンスが整うのかというと、信号源インピーダンスと伝送路の特性インピーダンスが同じであること、また、伝送路の特性インピーダンスと受信機の入力インピーダンス(終端抵抗とも言います)が同じであることを“インピーダンスが整合する”といいます。

伝送路の特性インピーダンスって何かという辺りから始めたいと思います。

伝送路の特性インピーダンスとは?

Wikipediaよれば、

『特性インピーダンスは、一様な伝送路を用いて電気エネルギーを伝達するときに伝送路上に発生する電圧と電流の比率。』

さらに、

『単位長さあたりのインダクタンスがLの電気伝導体と、単位長さあたりの静電容量がCの絶縁体を組み合わせた損失のない均一な伝送路の特性インピーダンスZ0は次式で表される。』

と書いてあります。簡単に言うと・・・

同軸やストリップラインはインダクタとコンデンサの組み合わせで出来ていて、その比率が特性インピーダンスになります。

特性インピーダンス50Ωの同軸にデジタルマルチメータを当てて抵抗を測定しても、どこにも50Ωは有りません(同軸の芯線の端と端を測定しても50Ωになりません)。

代表的な伝送路の特性インピーダンスを形状から求める計算式を下記にまとめました。

図1

なお、式の中のεrは比誘電率で使う材料で決まります。

インピーダンス50Ωの伝送路に信号を入れた時の波形

特性インピーダンスが(例えば)50Ωの伝送路に信号を入れると、どんな波形になるかを確認してみましょう。

図2

信号源V0は出力インピーダンスを可変できるように抵抗R1をつけています。伝送路T0~T3は中間の波形も観測できるように4分割にしました。

図3

信号源インピーダンスR1=50Ω、終端抵抗R0=50Ωの状態で、High幅が2nsecのパルス信号を入力した結果です。ストリップラインの特性インピーダンスZo=50Ωで、その長さは200cmです。(注意:長さが200cmのストリップラインに出会ったことはないですが、ここではオーバーに表現するために意図的に長くしました)

信号源V0から出力したパルスがR1を通過してストリップラインを伝播して、終端側端子Vout(青)には15nsecに波形が到達していることが分かります。

終端抵抗を外した時の変化

続いて終端抵抗R0を外して(R0=50GΩ)みましょう。

図4

終端抵抗が特性インピーダンスとずれたため反射が発生し、信号源側に反射波が伝播していきます。また終端抵抗がなくなった分、終端側の振幅Voutが2倍になっています。しかし、不思議なことにストリップラインの入力Vinやストリップラインの中を通過していく波形V1~V3に振幅は半分のままです。半分と成っているのが気になるので、信号源側の抵抗R1を50Ωからずらしてみましょう

抵抗とストリップラインが抵抗分割を形成する不思議

図5

上の図は信号源側の抵抗R1=40Ωとした結果です。ストリップライン入力電圧Vinが図 4より少し高くなっているのが分かるでしょうか? 信号源V0の出力Vsを抵抗R1とストリップラインが抵抗分割してVinを作っているのです。普通の抵抗とストリップラインは異質なものなのに、これらが抵抗分割の様に電圧を作っている事が私には驚きです。

信号源側の抵抗R1が特性インピーダンスと異なるので、反射波はふたたび抵抗R1で反射し、進行波としてストリップラインの中にはいって行きます。抵抗R1を40オームとした場合はGNDより下に進行波が発生します(図 5参照)が、抵抗R1を60Ωとした場合はGNDより上に進行波が発生します(図 6参照)

エネルギー減衰しない反射波により、電源電圧を超えた電圧が発生する

それでは、信号源側の抵抗R1=1Ω、終端抵抗R0=50Gの場合はどの様になるかと言うと・・・

図7

終端側のVoutには+6Vや-6Vが発生する事に成ります。電源電圧=3.3Vなのになぜ?

波は反射するとエネルギーが減衰しないので、いつまでも反射を繰り返します。その結果、電源電圧を超えた電圧やGND以下の電圧が発生することになります。

この端子にもしもLSIなどの最大定格が低いデバイスが繋がっていたら・・・LSIが壊れたと騒ぐこととに成ってしまいます。

次回も反射と格闘してみたいと思います。

bookmark_borderエミッタフォロア(その3)

今回は「エミッタフォロア(その3)」です。

前回はエミッタフォロアの出力インピーダンスを計算しました。今回は入力インピーダンスを計算してみたいと思います。

エミッタフォロアの入力インピーダンスを計算する

等価回路モデルを確認する

この等価回路から以下の関係式が導き出せます。

等価回路図から関係式を導く

これらを整理して、Vbとibの関係を求めます。

なので前回の式(A)と合わせると、Vbは以下のように表せます。

入力インピーダンスとは、ibが変化したときにどのくらいVbが変化するかという事なので、

を求めればよいことになります。つまり

となります。ここで、

を代入すると、

となります。インピーダンスの大きさは、

です。この式でω→0とすると、

ω→∞では、

つまり、直流では入力インピーダンスは無限大に、高周波ではR+ZLになると言っています。

回路図Simulationから結果を確認する

今回の最初の回路図のSimulation結果を下の図に示します。

等価モデルで計算したとおり、高周波ではR+RLになっていますが、低周波では無限大にはなっていません(^_^;

今回のモデルでは順方向電流増幅率βを考慮していないためなのですが、そのモデルでの計算は結構面倒な予感がしますので、別の機会で実施したいと思います。

次回は、PLL関連について触れてみたいと思っています。

bookmark_borderエミッタフォロア(その2)

今回は「エミッタフォロア(その2)」です。

入力インピーダンスとか出力インピーダンスを計算する

前回はエミッタフォロアがピーキングを出すことを計算で求めてみました。今回はエミッタフォロアの入力インピーダンスとか出力インピーダンスを計算してみたいと思います。前回の回路と等価モデルを再び使います。

等価モデルを見る

この等価回路から以下の関係式が導き出せます。

回路の関係式を導く

これらを整理して、Veへの伝達関数を求めます。

となります。と、ここまでは前回と同じです。

エミッタフォロアの出力インピーダンスを求める

エミッタフォロアの出力インピーダンスを計算する上で、負荷のZLは不要なのでZL→∞とします。

出力インピーダンスとは、負荷電流が変化したときにどのくらいVeが変化するかという事なので、を求めればよいことになります。つまり

となります。ここで、を代入すると、

となります。インピーダンスの大きさは、

です。

この式でω→0とすると、

ω→∞では、

つまり、直流では出力インピーダンスはに、高周波ではRになると言っています。

出力インピーダンスの計算結果を回路図で確認する

今回の最初の回路図のSimulation結果を下の図に示します。

等価モデルで計算したとおり、低周波では、に、高周波ではRになっています(^_^)

エミッタフォロアは、出力インピーダンスが周波数と共に高くなってきます。つまり、インダクタと似ていますので、不用意にコンデンサをつけると”共振”が起こり、エミッタフォロアの伝達関数にピーキングが生じます。

これは、前回”エミッタフォロア(その1のやり直し)”で計算で求めましたが、その裏づけにもなっています。

次回は、今回使ったモデルや計算式(A)を使って、エミッタフォロアの入力インピーダンスを計算してみたいと思います。

bookmark_borderエミッタフォロア(その1-2)

今回は「エミッタフォロア(その1-2)」です。

エミッタフォロアがピーキングを出すことを計算で求める

エミッタフォロアは主にバッファとして使う便利な回路ですが、ときどきピーキングを出して(時には発振して)

僕らの頭を悩ませてくれます。特に負荷が容量性(コンデンサがついている)の時は危険度が増します。

前回は、計算の途中までしかできてなかったので、今回はそのやり直しをしたいと思います。

今回は少しモデルを簡単にしました(じゃないと計算力が足りず、解けそうにないです)

エミッタフォロアの周波数特性Simulationを見る

上の図は、エミッタフォロアの周波数特性をSimulationしたものですが、負荷容量を変えるとピーキングが発生します。

等価モデルを使って再説明する

その仕組みについて、等価モデル(下図)を使って説明してみたいと思います。

前回よりも楽にエミッタフォロアの関係式を計算で求める

この等価回路から以下の関係式が導き出せます。

これらを整理して、Veへの伝達関数を求めます。

となります。Vb => Veの利得を求めると、

ここで、 を代入すると、

となります(・・・前回よりだいぶ簡単になりました)。

利得の大きさは、

です。

補足:複素関数について

複素関数で、分子と分母の実部と虚部をそれぞれ2乗すると、大きさの2乗になります。

この式で、分母が最も小さくなるのは、なので、このときに利得は、

になります。

例えば、CL=Ci=10p、R=100Ω、gm=10mA/26mV=384mSの場合、

となって、トランジスタを使ったシミュレーションと一致します(・・・よかった(^_^;)

次回は、今回使ったモデルや計算式(A)を使って、エミッタフォロアの入力インピーダンスや出力インピーダンスを計算してみたいと思います。(美斉津)

bookmark_borderエミッタフォロア(その1-1)

今回は「エミッタフォロア(その1-1)」です。

エミッタフォロアとは?

エミッタフォロアは、別名コレクタ接地回路とも言います。これはコレクタ電圧が動かない(つまり接地している)からそう呼びます。他にベース接地やエミッタ接地と言った物がありますが、その話は別の機会にするとして、今回はこのエミッタフォロアについて話してみます。英語で書くとemitter follower、直訳は”エミッタが従う”で、動作をそのまま名前にしています。

エミッタは誰に従うかと言うとベースです。ベース電圧が上がるとエミッタも上がり、下がると下がるのでこの回路はバッファとして使うことが一般的です。

上の図で、出力電圧は

   出力電圧(VE)=入力電圧(VB)- ベースエミッタ間電圧(約0.7V)

とラフに書けます。ベースエミッタ間電圧は電流や温度で変わりますが、大きな変化はしないのでほぼ固定電圧がオフセットとして入っていると思えば、理解は簡単になります。

(エミッタ電流が減ってくると様子が変わりますので、ここでは十分なエミッタ電流が流れているとして下さい)

入力側は少ないベース電流(Ib)しか流れませんからインピーダンスが高いです。その反面、出力側のエミッタ電流(Ie)はIe=(1+β)×Ibとなり、大電流がながれてインピーダンスは低くなります。

センサー等の敏感なデバイスをそっと触り、その電圧を50Ωの測定器や負荷が複数並列に繋がったインピーダンスの低い回路に入力する時に使います。(オシロスコープにつなげて使うFETプローブは、FETを使ったソースフォロアになっている事が多いです)。

ピーキングや発振で悩ませることがある

この便利なエミッタフォロアは、ときどきピーキングを出して(時には発振して)僕らの頭を悩ませてくれます。

特に負荷が容量性(コンデンサがついている)の時は危険度が増します。

上の図は、エミッタフォロアの周波数特性をSimulationしたものですが、負荷容量を変えるとピーキングが発生します。

コンデンサは負荷に1つしかないのに不思議な感じがします。が、トランジスタの中のコンデンサが効いているのです。

等価モデルでエミッタフォロアの仕組みを知る

それでは、最も簡単な等価モデル(下図)でその仕組みを説明してみます。

ベース電圧とエミッタ電圧、ベースの内部電圧の関係式を作成する

ベース電圧VBとエミッタ電圧VE、ベースの内部電圧VB2の関係は、以下の関係式になります。

ここで、記号”//”は並列を意味し、Zbe=Cbe//Rbeとします。

コレクタ電流(Ic)は、電圧依存電流源G1の利得をGmとすると

で表せます。ベース電流Ibは

となります。エミッタ電流(Ie)とエミッタ電圧(VE)は以下の関係にあります。

Ib,Ie,Icを消して、VEをVBについて整理して見ると、

結構大変そう(汗)

となります(汗、汗)。

分母にZbe×ZLがあると言う事は、複素数のjω同士の掛け算があると言う事なので、分母<分子となる事を意味します。つまり、VE>VBとなる場合(ピーキング)があると言う事です。。。すみません、納得できないと思いますm(_ _)m

ここから先は、ちょっと面倒な計算をしないといけないので、次回「エミッタフォロア(1-2)」で説明したいと思います。ではまた。

bookmark_border反射 (3)

前回までは“反射”がどの様に波形に影響を与えるか過渡解析を使って説明をしてきました。今回は小信号解析(AC解析)も使ってもう少し反射について説明したいと思います。

過渡解析を使わず、AC解析を用いる

線形解析ができるのか確認

“反射”と言うと進行する波と反射する波があり、それらが重なり合うので、なんとなく線形解析が出来ないような気がするのですが、どうなるか確認してみたいと思います。

図1

前回使った回路を図 1に示します。信号源インピーダンスRs=40Ω(多重反射を意図的に発生させます)で、終端側の抵抗Rtm=50G(Open)、寄生容量C0=10pFとしています。また、各伝送路超は50cmとしていますので、全部で2mの長さになります。電圧源V0を信号源として、Voutまでの周波数特性を計算した結果を次に示します。

図2

17MHz辺りでピーキングが発生して、それが繰り返されているように見えます。

横軸をリニアに変更した結果を下に示しました。

図3

横軸をリニアにすると、同じ形の繰り返しになっていることがよく分かります。周波数は35MHzで形も正弦波のように見えます。

横軸が時間であれば、よくある波形なのですが、このグラフの横軸は周波数です。

周波数特性を知る

あまり見ない形になっているので、これで良いのか少し不安では有りますが、気にせず先に行こうと思います。

先ずは35MHzと言う数字はどこから来ているのか考えてみることにします。 35MHzの一周期は・・・ です。

伝送路の長さは50cm×4=200cm。伝送路の計算に用いている遅延は70psec/cmとしています(普通のFR-4はこのくらいの遅延になります)。 なので、信号の遅延量は、70ps×200cm=14nsecとなります。14nsecと言うことは の信号ならちょうど一周期分がぴったり伝送路に入ります。

と成ると、 周期では35.7MHzと成り、周期では17.9MHzと成ります。

図4
図5

周波数特性でピークと成る周波数は伝送路の中に入れると、“腹”が反対側に表れ、反対に谷となる周波数は、“節”が伝送路の反対側に現れる法則があるようです。 ときどき“反射の影響が出るのはどのくらいの周波数からか?”と聞かれることがあるのですが“伝送路長が 波長になる周波数からかな”と、答えていました。

が図5を見ると、 “伝送路長が 波長になる周波数から。場合に依っては 波長から”と答えないといけなかった事が分かってしまいました(大汗)

例えば、10cmのストリップラインをFR-4基板に引いたときは・・・

この周波数あたりから利得特性に盛り上がりが現れ、358MHzではピークとなるので、180MHz辺りの周波数では波形に影響が出てくると考えるべきです。

試しに反射を線形解析で解いてみる

ところで、周波数特性が分かっていると言うことは、逆フーリエ変換すれば時間軸波形を求めることが出来るかもしれません。“反射”は周波数特性やフーリエ変換と言った線形解析では解けないというイメージがあるのですが、試してみたいと思います。

入力波形

図6

この波形をフーリエ変換すると下記のような周波数成分に分解できます。

図7

この各周波数成分に下の周波数特性を掛け算して・・・

伝送路の周波数特性

図8

その結果を逆フーリエ変換すると・・・下のような波形になります。

逆フーリエ変換による波形出力

出力波形

図9

過渡解析と逆フーリエ変換による波形の違い

同じ事を過渡解析で計算してみると、

図10

と成って、ほぼ同じ波形を得ることができました。注目すべきは、1個目のパルスです。

周波数特性+逆フーリエ変換を使った結果では1個目のパルスから歪んでいますが、過渡解析は最初のパルスは歪んでいません。どちらの結果を信じれば良いのでしょうか。

ひずみが発生する原因は多重反射です。パルスが伝送路内に入ってまだ時間が経過してない間は多重反射が起きていない(反射がまだ発生していない)ので、最初のパルスは歪まずに到達できるのです。この辺まで計算してくれる過渡解析の方がより現実に近い計算結果を示していると言えます。

しかし、過渡解析には時間がかかります。伝送路が複雑になると指数関数的に計算時間が増えていきます。反面、周波数特性(AC解析)+逆フーリエ変換は伝送路の複雑でも殆ど計算時間は変わらないです。最初のパルスを無視すれば、十分使えるのではないかと思います。

今回は“反射”を過渡解析を使わないで計算する方法を紹介しました。

次回は、反射+線形解析となると避けては通れないSパラメータに触れたいと思います。

bookmark_borderインピーダンスマッチング

D-CLUEには大きく分けて3分野のエンジニアが在籍しています。それはアナログデジタルファームの3分野です。
代表の石川は、D-CLUEを創立する時から、この異なる3分野のエンジニアを集めて会社を創りました。この異なる分野のエンジニアがそれぞれの分野の目線から、同じ問題に取組み、団結と「合わせミソ」で幾多の難題を解決してました。

異なる分野のエンジニアが一つの仕事に団結して取り組むためには、相手の分野の事を深くは理解はできなくても、ある程度、感覚的に分かっている事が必要なのではないかと思います。
私はアナログのエンジニアですが、アナログだけを分かっていれば済むかと言うと、そうでは無く、
デジタル回路が何をしているのか、ファームはどう制御しているか等をある程度分かっていないと、
団結して一つの仕事に取組めないのでは無いかと思います。

そんな背景もあり、今回のブログのテーマは、「アナログ回路を分かり安く説明して、デジタルやファームのエンジニアに感覚的に知ってもらうこと」です。

初めての方もいらっしゃるかも知れないので、簡単な自己紹介をさせて頂きます。

私は美斉津と申します。

1986年に電気工学科を卒業したのですが、アナログ電子回路は避けて通って来たので、卒論は、今となっては名前すら見る事がなくなった「FORTRAN」を使った光線追跡プログラムに関するものでした。そんな学生でしたので、アナログの世界には会社に入ってから出会いました。
そして、アナログの世界の魅力に取り付かれて、気が付けば長い年月が過ぎていました。

インピーダンスマッチングとは

今回は、「インピーダンスマッチング」について触れたいと思います。

デジタル回路の動作速度が速くなると、今まで経験した事のない問題に直面します。
なぜか信号が化ける、書いたはずのデータが書けてない、時々誤動作する、などの頭の痛い問題です。
その原因のひとつとして「インピーダンスマッチング」があげられます。
RFなどの高周波が絡む仕事をしている方にとっては馴染みの深い単語ですが、デジタル回路を中心に仕事をされている方には、非常に分かり難いのではないかと思います。
学術的には「伝送路の特性インピーダンスと終端抵抗のインピーダンスが整合している事」と書いてあるのですが・・・何を言っているのか理解し難いものがあります。

インピーダンス不整合とは

インピーダンスがマッチングしないと・・・何が問題なのか?

インピーダンスが整合(つまり一致)していないと何が起こるかと言うと、「反射」が起こります。
つまり、配線やプリント版のパターンを通ってきた大事な信号が反射してしまい、エラーや誤動作を引き起こします。

なぜ反射が起きるのか

それでは、なぜ反射するかというと・・・

しっかりと説明するには難しい計算式を沢山使わないといけないので、簡単な例で説明しようと思います。長いロープ(出来れば柔らかいほうがいいです)を用意して床に一直線に伸ばして置きます。
片方を誰かに足で踏んでもらっておいて、反対側の端を持って”1”を伝えるつもりで勢いよく持ち上げてすぐ下げます。そうすると、ロープに”山”ができ、これが反対の端に向かって走って行くのが見えると思います。反対の端に届いた時に何が起きるかよく観察してください。
“小さい山”がちょっと戻ってきませんでしたか? これが”反射”です。

今まで、ロープを伝ってきた信号の”山”が急にロープが無くなってしまうので、行き場を失って戻ってきたのです。つまり、今まで信号を伝えてきた媒体が急に変わり、片側には山があるのに、もう片側は平たんな状態になってしまい、“連続である”という自然現象の原則と矛盾します。この矛盾を解消するために、反対方向の山が発生します。これが反射が生じる理由です。
この現象は、電気信号だけではなく”音”や”光”でも一緒です。今まで飛んできた媒体の空気とは違う山に、声が当たって反射したのが”やまびこ”です。

反射を発生させないために必要なこと

では、反射を発生させないようにするには・・・

媒体が変わったと気づかせないように、つまり、ロープが切れていないように見せればいいのです。
具体的には、ロープの端を足で踏んで固定しないで動くようにしてやれば、反射は起きなくなります(と思います)。
アナログ回路設計は難しいとか、高速伝送は理解しにくいとか良く言われます。
でも、アナログ回路は我々身の回りに「自然」という非常に優れたお手本を真似をしているだけなのでは? スケール(時間軸を含めて)が違うだけでないか?と感じる事がよくあります。
“アナログ”の語源は、英語のanalogy(類似性、類似学)で、”類似している”から連続していると言う意味と変化したと聞きます。

ロープのように”連続”した信号を扱うアナログ回路設計

つまり、連続した信号を扱うからアナログ回路なのですが、連続しているのは信号だけではなく、電子回路で起きている現象が我々の回りの自然と密接な関係にあり、まさに連続しているのでは?と感じている今日この頃です。感覚的な説明になってしまいましたが、次回は具体的な回路を使い、波形の歪み方などを含めて、インピーダンスマッチングを説明したいと思います。

(2008/1/8 弊社 匠ブログ記事より加筆転載)