10月, 2024 | ディー・クル―・テクノロジーズ

bookmark_borderシステムLSIのブレイクスルー技術③ 動的電圧スケーリング(DVS)とDVFSの違い

こんにちは。今日は、DVFSの元となった、動的電圧スケーリング(DVS)開発の背景をお伝えします。

動的電圧スケーリング(DVS)とは?

近年マーケットからLSIの低消費電力化が強く求められていく時代でありながら、従来SoCのSPECで規定されていた設計補償動作電圧では、本来欲しい動作電圧に比べて大きなマージンを含んだ電圧が必要となり、それが低消費電力化の障害となっていました。

そこでDVSが登場したのです。一言で言うと、DVSは、SoC内のクリティカルパスが動作するぎりぎり最小の電源電圧Vddを適応的にSoCに供給する技術です。どういうことか分かりやすくするため、動的電圧スケーリング(DVS)開発の背景を図示しました。

図1 動的電圧スケーリング(DVS)開発の背景

左側が従来の設計補償動作電圧、右側がDVSです。SoCにおけるプロセスばらつき、温度変動、電源電圧変動、経年劣化等のworst条件を満足させるため、本来必要な動作電圧に比べ無駄に大きかった動作保証電圧の閾値を、右のDVSではクリティカルパスが動作するギリギリ+αの最小電圧をアダプティブにSoCに供給するため、動作電圧を低減し省電力化に貢献できます。

レプリカによるクリティカルパス監視がDVS技術の肝

図2にプロセスばらつき/温度変動等に対応したDVSを紹介します。SoC内部のクリティカルパスと同等の遅延時間を有するレプリカ回路を用意し、レプリカの遅延時間がクロック1周期内に入るギリギリ最小の電源電圧をSoCに供給します。

図2 DVS(プロセスバラツキ/変動対応)SoCの構成(特開2000-216337を参考に弊社作成)

無論電源電圧供給ではTsu/Thを考慮しますが、こうしたレプリカによるクリティカルパスモニターが、設計マージンの最小化を可能した結果、低消費電力化が実現しています。

DVSの効果

DVSは従来型に比べどの程度省電力化に効果があるのでしょうか?

図3にDVSの効果を示します。近年はMOS トランジスタの微細化により、サブスレッシュホールド・リーク電流が無視できなくなります。従来の固定電圧方式では、低Vthサンプルでリーク電流の増大に伴う消費電力増加が大きな問題になります。一方でDVSを採用すると、低Vthであっても回路の高速化を図れるため、電源電圧を低減でき、低消費電力化が図れますので、製品の消費電力SPEC低減に貢献できます。

  • MOS動作周波数 Fmax ∝ VddVth)・μ/ L2
  • 微細化するとリーク電流増大→リークが問題となるVth小サンプルをDVSで補償
図3 DVS有り、無しにおける消費電力効果の比較

DVFSによる最小電源電圧供給

DVSとDVFSの違いは、一言で言うとプロセスばらつき等のworst条件において、電圧だけでなく、動作周波数も考慮に入れて最小電源電圧を供給できる点です。図4にばらつき対応DVFSのブロック図、図5にばらつき対応のDVFSによる最小電源電圧供給を示します。

図4 ばらつき対応DVFSのブロック図

DVFSは、プロセスばらつき/温度変動/動作周波数に応じて、SoCが動作する最小限の電圧を適用的に供給します。SoC内蔵のCPUがレプリカからの遅延情報を電圧指示に変えるのですが、これがMPU/GPUの場合は負荷検出部及びVt検出部(Ring Osc)からの情報がレプリカに与えられます。

図5 ばらつき対応のDVFSによる最小電源電圧供給

ばらつき対応DVFSであれば、動作周波数に応じリーク電流が大きくなる条件で電源電圧を下げるので、リーク電力が保証されます。すなわち、Worst条件に応じて動的にLSIが動作可能な最低限の電圧を供給します。この結果リーク電流を含めて消費電力を最小化できます。

まとめ

最後にDVFSのまとめを示します。

1.プロセッサ系のMPU/GPU/SoCでは素子バラツキ対応を含めたDVFSが幅広く使われている。
2.DVFSは負荷状態に応じて、動的に電源電圧、クロック周波数を制御する。
3. 素子バラツキを考慮したDVFSは低消費電力化の効果が大きい。
4. DVFSは、今後プロセッサのみならず各種SoC(ASIC)にも幅広く使われていく。

いかがでしたでしょうか。この記事がLSIの低電力化における皆様のご理解の一助に慣れればうれしいです。

bookmark_borderUVをセンサで計測してみよう!⑦ ~外で実際に動作を確認してみよう ~実験編

なかなか実験の日程の調整ができず、実験日は2024/9/26(木)。夏?のぎりぎりになってしまいました。

作成したUVセンサを傘につけ実験

気象庁の計測値でみると、こんな感じです。

12時から20分ほど、会社近くの日産スタジアムに行くまでの見晴らしがよいところで実験しました。

ただ当日は晴れではあったのですが、太陽の周辺に雲がありまた風もあったのでなかなか同環境での実験ができませんでした。秋晴れ! という日にも実験してみたいですね。

気象庁での紫外線情報をリファレンスにオフセットをかける予定でしたが、実際に外にでて試しに測定してみたところセンサ値の紫外線情報にかなり差があり、今回はオフセットなしにして紫外線対策グッズでどうセンサ値が変わるかを確認したいと思います。

やっぱりリファレンスになるデバイスほしいですねー。

試した日傘(私物)はこの2つ

同環境での実験が難しかったので、試したのは2種の日傘だけになってしまいました。

①裏地が黒の日傘

②麻生地の日傘

麻生地のほうはデザインが気に入っておりましてかれこれ3年以上は使用しています。なので紫外線対策という面では効果が薄くなっている自覚はしています。。。デザインが好きなので買い替える予定はありませんが(^^)

では実験結果です。

実験結果

①裏地が黒で99.9%カットと保証がされていた日傘UVインデックス値の結果

②麻生地の日傘のUVインデックス値の結果

日傘(内)は、日傘(外)のUVインデックス値より大きく下がることが確認できました! しっかり紫外線防止効果があることが分かります。

また、お気に入りの麻生地の日傘も外に比べ約90%近く下がっているのは、個人的に大満足です。また快晴のときにまたいろいろなパターンで実験してみたいですね。

最後に、IoTの設計開発についてご相談したいことがございましたら、遠慮なくこちらのフォームにてお伝えください。

秋も紫外線はまだまだ強い日がありますから、日傘を使いつつ気を付けて過ごそうと思います。いつか、来年の夏の暑い晴れた日に実験再チャレンジしてご報告したいです! ではでは!

bookmark_borderUVをセンサで計測してみよう!⑥ ~外で実際に動作を確認してみよう ~準備編Ⅲ

組み立てたLeafonyをケースに入れよう

組み立てたLeafonyを目立たないようケースに入れて外で実験できるようにしたいと思います。ケースに入れなくても実験はできますが、都会は人の目も多いですし、持ち歩いて怪しまれないように。

って、よっぽどあやしいわ これ

さて、普段の業務だとケースというと”タカチケース”を購入して加工しているのですが、

 「今回はスピード重視で簡単に加工できる」

 「失敗してもすぐやり直せる」 をテーマに掲げて行います!

なぜって、いくら10月で30℃超えの気候とはいえ、ゆっくりしてると冬になってしまうので。

というわけで、何をするかは、ガジェット好きな皆様はもうお分かりですね。

私の大好きな100円ショップ ダイソー様で物色ですルンルン

ダイソーで発見した”便利ケース”

おなじみの収納ケースのエリア、衛生用品、キッチン用品…うろうろしたところ良さそうなものがありました!!

これです

お弁当を毎日作るお母さんお父さんの味方、マヨネーズケース!!

推しポイントは、3つ。

  • カッターで簡単に加工ができます。
  • サイズもスポっときれいには入りませんが少し押し込めば入りそうなところ。
  • しかも、蓋もあるのでここにUVセンサーを固定するのもできそう。

(この創造力を掻き立てるSPECが尊い…)

これに組み立てたLeafonyを入れて実験できるように少し加工していこうと思います!!
で、できあがったのがこちら!!

透明な蓋にセンサー用の穴をあけ、マスキングテープで固定にしました。

さらにさらに、傘にぶら下げるといったことができるように手持ちのチェーンをつけてみました。

え?「マスキングテープ、素敵に貼れませんか」ですって?

(想定よりうまく固定できなかったので試行錯誤しちゃったんですよね。。アハハ。。)

ままま、すごい手作り感満載ですが、これも味ですよアジ! <゜)))彡
準備は完了!! 実際に外で実験してきましょう!!